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Investigations of Kowalewska , Liapunov and other authors in the field of 
solid body dynamics have shown that a general solution of equations of mo- 
tion can be represented by univalued functions of time only in the classical 

problems of Euler, Lagrange, and Kowalewska , and then only when there ex- 
ists a supplementary univalued integral. Whether this is purely coincidental 
or due to some fundamental causes remains obscure. It is shown below by 

using Poincare’s method of the small parameter that it is the existence of an 
infinite number of non-unique solutions which generally hinders the appear- 
ance of a univalued analytic integral. 

1. Theorem on the nonexistence of univalued tntegrals, Let us 

consider the canonical system of differential equations with the Hamiltonian 

H’(I, cp, CL) = H, (1) + CLHl (1, rp) + * * - (1.1) 

I = (I,, I,), ‘p = (cPll (P2) 

where H (1, Cpt p) is assumed to be a real analytic function in the direct product 

D X T2 {q mod 2n) X (--E, 8) (D is a region in,R2 {II, I,}). 
We assume that for fixed 1 E D, and p E (-_E, ‘e) the Hamiltonian (1.1) 

is continued in the direct product of complex planesl C X C to a univalued function 
of variables (PI:; and ‘Fs . Presence of singular points of function (1, 1) is not excluded 
when ‘Pr and ‘P2- are complex, 

Let us define some of the notation. Let V _ be a compact subregion of D and 
Y > 0. Then h (V, v) = {I : I = I’ $- il”, I’ E V, 1 I” 1 ( v}. If V’ c V 

and v’ -C V, then A (V’, v’) c A- (V, v). We set II (p) = {(cpl, cp2) E 

C x C: 1 Im (Pk 1 < p; k = 1,2}.‘jAil solutions of the unperturbed system 

are univalued functions of the complex variable t6zc * but solutions of perturbed 
equations are generally not univalued when p # 0 . 

Let us consider in the complex time plane tEc the closed continuous contour 

r and its image y in the mapping t + C X C (TV I’) according to formula 

‘P(Q=cp”$_o(I”)t (I”ED, $“ET2) 

Let us assume that the Hamiltonian H (I, cp, p) is analytic in the direct product 

v x Q x (-- e, e), where v is some compact neighborhood of point I0 E D and &l2 
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is a connected region in C x C, II (s) c Q c II (8) (0 (8 <S), that 
contains the continuous curve Y. 

If : cp E a, then 

This equality is evidently valid for real values of Cp. In the general case of Q E Q 
its validity follows from the connectedness of [ 52 and the uniqueness of the analytic 
continuation. 

Note that when rpE fJ and EL= (- 8, e) then function H (1, 9, p) is 
analytic in region A (V, Y) with I espect to I,and 1% if V is fairly small, 

According to Poincare’s theorem [ 1,2 ] solutions of perturbed equations can be ex- 

panded in power series of i_~ 

which are convergent when t E I’ and parameter p is fairly small, 
We say that the analytic vector function f (t), t E r is not univalued along I?, 

if it has a discontinuity E + 0 after going around contour r. If function 11 
(t; I”, 4) is not univalued along r, the perturbed solution (1.2 ) is also not univalued 

along contour I? for small values of parameter /J , 
Let us fix the initial values I” and rp” and cont~uously distort contour I’ so that 

contour y. does not pass through any singular points of the Hamiltonian Ii (I, q, FL). 
Using the Cauchy theorem it is possible to show that function 11 (2; I”, 9”) when pas- 
sing around the distorted contour changes by the same quantity E = (E,, 8,) # 0. 
Since according to initial data solutions (1.2 ) are continuous [l ,2 1, function 1’ (t; 
I”, cc”) is not univalued along the contour for all 1 = 1~ from some small region 

u CI: D ,and when pg U the jump f = t, (1’) # 0 occurs, 
We say that a system of canonical equations with Hamiltonian (1.1) has the uni- 

valued integral F (I, cp, p), if that function 

1) is the first integral; 

2) is a real analytic unction in region D x T* X (- E, e), and 

3 > is univalued with respect to variables cpi and ~2 in the direct product c X c 
for fixed I and p . 

Function H is evidently one of such integrals. We stress that the presence of sin- 
gular points of function F when variables cpl and (p2 are complex, 

T h e o r e m 1, Let us assume that the unperturbed system is nondegenerate, i. e. 
that in region D, the Hessian 

and that for some 1” E 13 and @’ E T 2 ~nc~onal 11 (t; I”, q”) is then not 

univalued along contour I’. The canonical system of differential equations with 
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Hamiltonian (1.1) does not contain the univalued integral p (1, cp, !A), that is in- 

dependent of (1.1) and analytic in the direct product W x 52 X (- 8, e), where 

W is some neighborhood of point 1 z1 10. 

‘2. Proof of theorem 1 (see Cl1 Chapter VI. We expand functionF(/, (p,~) 
in series in powers of J.4 

F = Fe (I, cp) + @I (1, cp) + * - - (2.1) 

If (I, 9) & A (V, Y) X Q U” C we and Y * IS fairly small) , this series is convergent 
when parameter p is small. 

Lemma 1. Function PO is independent of (0. 

This statement is implied by the nondegeneracy of the unperturbed system (see 

Cl] Chapter V) when (I, cp) E D X T2, by the connectedness of region Q when 

cp E n. 

Le m m a 2. Functions HO (1) and FO (1) are interdependent in region W; 
i. e. the Jacobian 

(2.2) 

when IEW. 

Pro of, Since P (i, rp3 rr) is the first integral of the canonical system of equations 

with Hamilt~ia~ (1.1) , that function is constant along solutions (1.2 > .Hence its values 
at the instant of time [ t E r and after passing over contou I’ are the same. From this 

F,, (I” -f- pI’ (z) -+ . . .) t @I (I” i- pZ’ (z) + . . ., I$ + m,t i_ 
pq’(z)+...)+...r Fo (1’ + P (I1 (T) -t E (0) + . . .) + 

MI (1’ -I- . . .,(P”+ cot+. . .j +. . . 

Expanding this identity in power series in p and equating the coefficient at the 
first power of p, we obtain 

Since H (I, (p, P) is also the first univalued integral, hence 

Comparing the last two formulas, we conclude that identity (2.2) is valid when 
I” E W n U, i. e. functions Ho and F, are interdependent in region W fl U and, 

consequently, throughout region w. 
Let us now assume that functions (1.1) and (2. 1) are independent. Let ,# be the 

nonzero minor of the second order of Jacobi ‘s matrix 

a(r_,, F) 

a (11, 127 % 92) 

Function J (I, q~, p,) is analytic and can be expanded in a convergent series in 

powers of p. We assume that in that expansion the coefficient at J_L’ (p > 0) is 
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nonzero, It follows from Lemma 2 that p > 1. 
Since the Hessian 1 d2ffg’d12 1 qk 0, hence in some small, region V C W 

C D the derivative aH, / 6’1, # 0. This shows that in this region equation H, 
(I,, 1,) = H, can be solved for 1, and that the obtained expression can be sub&i - 

tuted into function Fa (II, Is) , yielding F, = F,-, (I,’ (H,, I,), I,). Since Lila 
and J’, are dependent, hence Fs = Y (Ho), where ‘p! (5) is an analytic func- 

tion in the interval (minv Ho, maxv H,). Note that YJ (s) is analytic in the 

small complex neighborhood of that integral. 

When ,u is fairly small function Y (R) is analytic with respect to I and Q, 

in region V’ x Q, where v’ is a compact region inside V. Since the expansion 
of function _V - Y (N) in series in powers of p, does not contain a free term, hence 

- Y (H) = @“. Function 

is<nalytic in region d (V’, 
8” (I, cp, p) is the first univalued integral that 

Y’) x 62 x (- e’, E’) where Y’ and e’ are fairly 

small. By Lemmas 1 and 2 function F *’ does not contain JJ , and Ho (I) and F,’ (I) 
are interdependent in region v’ C D. Since F = Y (H) + pF,’ i- p2Fl’ -t 
. . .‘I hence the expansion of the minor J in series of powers of p begins with a term 

of order p2. 
Repeating this operation p times we find that the expansion of function / begins 

with terms of order @+I and not EL” as assumed above. This contradiction proves 

Theorem 1, 

3, Application to the problem of heavy soltd body rotatton 
a b ou t a fix e d p o f n t _ The Hamiltonian of this problem can be represented in the 

form (see [ 11) 

H = Ho + @I (3.1) 

where H,, is the system kinetic energy (the Hamiltonian of the Euler - Poinsot prob- 
lem ) and @I is the potential energy ( p is the product of the body weight by the 

distance between the suspension point and the center of gravity ) . We assume that para- 
meter p is small. In other words, the problem of rotation of a heavy solid body about 
a fixed point is considered as a perturbation of the integrable Euler - Poinsot problem. 

Using the area integral we reduce the number of degrees of freedom to two t and 
assume henceforth that the constant of areas is fixed, 

When p = 0 the unper~rbed problem is integrable, and in terms of variables 

I and cp , action and angle, respectively, function H, depends only on 1 = (I,_, I,), 
as defined by the following implicit formula 13 3: 

where d > B > C are the principal moments of inertia of the solid body, Function 
Ho (11, 12) is determinate in region A = {I,, 12 : 1-2 > 0, 1 I, 1 < Iz}, and an- 

anlytic everywhere, except at points of the straight lines II = 0, 1 11 1 = 12, 2Ho = 
B”rz2 [ 3 ] . We denote by A, one of the connected components of the analyti- 
city region of function He. 

For fixed 1 E & the perturbing function HI (it, cp) is analytic on the two- 
dimensional torus ~s{~rno~ 2%) and is a univalued meromorphic function in 
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c X C [4.5]. It is consequently possible to raise in the considered problem the 
equation of existence of new univalued analytic integrals. Let us consider the case of 
a nonsymmetric body. i.e. when A > B > C. 

The integrable unperturbed Euler - Poinsot problem is nondegenerate, since the 
Hessian 1 d2HolW 1 is nonzero throughout region A, [3 I. The question arises 

whether contour r and the initial conditions (I’, cp”) E A0 x T*, under which the 
related function 1’ (t; IO, cp”) is not univalued along contour I’, do exist. 

The perturbing function H1 (1, cp) may be represented in the form I: 5 ] 

H1 = f+ (1, cpr) exp (+,) + f- (1, cpr) cxp (-irk) + f0 (1, 91) 

For fixed 1 E Aa the complex conjugate meromorphic functions f+ (I, z) and 

f- (I, z) have a real period of 2n and a pure imaginary “quasi-period” of ia (I) 

(see [ 5 1 > . For instance, when the center of mass is located on the major axis of the 
ellipsoid of inertia, then 

Explicit expressions for functions a (I) and u (I) are 15 1 

*+, G = + F (arctg + , h’) , K’ (A) = K (J-7 (3.2) 

C(A-B) 
“= A(B-CC) ' 

A2 = x2 2Cll,, - rg 
I+-2AHo ' 

h'= 1/j -Ah" 

where K (A) is a complete elliptic integral of the first hind with modulus J,, and F 
is an elliptic integral of the first kind. 

Function i, (I, 2) is elliptic of real and imaginary periods 2n and ia, respectively. 

Let the ratio of frequencies 0, be an integral number n when 1 - IO. If 

the absolute value 1 n 1 is fairly large, such values of “action” variables exist ‘[ 3 1, 

and in that case the real function 

h (1”, t) = f+ (IO, art) exp (io&) + f- (IO, qt) exp (--icod) 

is periodic of some period T with respect to t , We set 
T 

h, (I”) = +- \ h (I”, t) 02 
0 

Note that for fixed A, B, and C the mean .h, depends only on n and is in- 
dependent of 1” [3,6]. Using expansions of functions f+ and f_ in trigonometric 

4 c 

4 
b .Y 

/ 

series [5] it is possible to show the existence of an 
infinite number of nonzero mean quantities h,, 
(cf. C 6 ] ) . We denote by B, the set of points 

1 E AC1 that satisfy conditions w2 (I) / 01 
(I) =: n and h, (I) # 0. 

A B 
kt I0 belong to some B,, and cp0 --. 0. Let 

C*T 
us consider in the complex plane t El c the 

C closed contour F represented in Fig. 1 by the 

boundary of rectangle ABCJ) . We select the 
Fig. 1 number T. so that the meromorphic functions 
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f* (p, or.z) and f. (I”, 012) do not have poles on r. We denote by y the continuous 
closed curve in C X C which is the image of the following mapping : 

cp = 0 uv, t E r (cp = (cpl, $4, 0 = (6-h, 02)) 

Let U be a small neighborhood of point 1” E & and Q be a connected re- 
gion of contour y in C x C, 11 (s) c Q c II (S)(O ( s (5’). such that for 
all 1 E u the meromorphic functions fc (I, cpJ and f,, (I, cpl) do not have 

poles in region Q. 

Theorem 2. There exists for any nonsymmetric solid body an N (A1 f? 7 c) 
such that when point 

1”~ B =, 
R 

(&B,cAa 

then the canonical equations of motion of a heavy solid body with a fixed point do not 

have a univalued integral F (1, 99 P) that is independent of function (3.1) and 
analytic in the direct product u X Q X (-&, &). 

4. Pro o f o f Theo rem 2. Since the unperturbed problem is nondegenerate, 
hence by Theorem 1 it is sufficient to establish that function 1’ (t; I”, 0) is not 
univalued. Let us consider the case when the center of mass is located on the major 

axis of the ellipsoid of inertia. The general case is analyzed similarly. 

We set 

0 (I”, t) ‘- - s =-i [f+(l”,olt)exp(io,t)--f-(1’, wlt)exp(-bolt)] 

Since 

E?. = f 0 (I”, t) dt (4.1) 
7 

Function 0 (I”, t) isperiodicof real period T with respect to t ,consequently , 

C A 

s cP(IO, t) at + s 0(1°, t)dt = 0 (4.2) 
B D 

We set 

and will show that 

B 

CT* = 7 i s f f (lo, colt) exp (1-k @A) dt 
A 
D 

Z* = ‘f i S f+ (I”, colt) exp (* io2t) dt 

C 

(4.3 ) 



426 V. V. Kozlov 

Substituting variables by formula t = s + ia. I al, we obtain 

2, = T exp FUna + @I J f* (1”, qz) exp (+ i0,z) dz = 
r+T 

- of exp [‘f: (na + 41 
Integral (4.1) with allowance for formulas (4.2 ) and (4.3 ) is equal 

Ea = d, [l - exp (-na - b)l + U_ 11 - exp (na + 0)l 

Evidently h, = i (0, - a_) i T. Since functions f+ and f_ are complex con- 
jugate, hence o+ = 4- , and since h, # 0, the integrals U, and w_ are nonzero. 

Let us show that & (I”) # 0. Since in the opposite case 

3 -exp(--o--a) Q- 
I-exp(na-+cr) = c = I I I 

1 

consequently ~CX (1’) + U (I”) = 0. Using formulas (3.2 ) the above relation can be 
written as 

r&‘(h) + nF (arctg +, r/l - A”) = 0 (4.4) 

If ( IZ ) approaches infinity, 02 / ml--+ 00 and 2Ho / Ia’ -+ B-1 [3 1. Hence 
s h -+ C / A < 1 and functions K’ and F tend to definite limits. Since 

lim K’(h)+0 
h--c:/.4 

and function h isconstant insetB, formula (4.4) isinvalid when n J >N, N (A, B, C). 
Theorem 2 is proved. 
It can be shown that a similar statement is also valid when the initial phases (p” 

are not (0, 0) but (0, n). I.$ was shown in [ 6 1 that the periodic solutions of the unper- 
turbed problem with initial data 1” = U,, ‘plo = 0, qaO = 9, and n do not vanish with 

the addition of perturbation and for small values of parameter ll=#=O become the 

nondegenerate periodic solutions of the perturbed system of equations. Thus the calcu- 
lations carried out in Section 4 prove that beginning from some number n..the nonde - 

generate periodic solutions for small p +. 0 , determined in [ 6 I are not univalued 

functions in the complex time plane. 

The author thanks v. V,~n~iantsev and 1~. A. Arkhangel’skii for their interest in this work. 
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